Explicit High-Order Method to Solve Coupled Nonlinear Schrödinger Equations
نویسندگان
چکیده
منابع مشابه
Iterative scheme to a coupled system of highly nonlinear fractional order differential equations
In this article, we investigate sufficient conditions for existence of maximal and minimal solutions to a coupled system of highly nonlinear differential equations of fractional order with mixed type boundary conditions. To achieve this goal, we apply monotone iterative technique together with the method of upper and lower solutions. Also an error estimation is given to check the accuracy of th...
متن کاملAn explicit high order method for fractional advection diffusion equations
We propose a high order explicit finite difference method for fractional advection diffusion equations. These equations can be obtained from the standard advection diffusion equations by replacing the second order spatial derivative by a fractional operator of order α with 1 < α ≤ 2. This operator is defined by a combination of the left and right Riemann–Liouville fractional derivatives. We stu...
متن کاملApplication of Laplace Decomposition Method to Solve Nonlinear Coupled Partial Differential Equations
Abstract: In this article, we develop a method to obtain approximate solutions of nonlinear coupled partial differential equations with the help of Laplace Decomposition Method (LDM). The technique is based on the application of Laplace transform to nonlinear coupled partial differential equations. The nonlinear term can easily be handled with the help of Adomian polynomials. We illustrate this...
متن کاملA third-order Newton-type method to solve systems of nonlinear equations
In this paper, we present a third-order Newton-type method to solve systems of nonlinear equations. In the first we present theoretical preliminaries of the method. Secondly, we solve some systems of nonlinear equations. All test problems show the third-order convergence of our method. 2006 Elsevier Inc. All rights reserved.
متن کاملHigh order quadrature based iterative method for approximating the solution of nonlinear equations
In this paper, weight function and composition technique is utilized to speeds up the convergence order and increase the efficiency of an existing quadrature based iterative method. This results in the proposition of its improved form from a two-point quadrature based method of convergence order ρ = 3 with efficiency index EI = 1:3161 to a three-point method of convergence order ρ = 8 with EI =...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Pure Mathematics
سال: 2021
ISSN: 2160-0368,2160-0384
DOI: 10.4236/apm.2021.115033